ABSTRAO

From Real to Possible

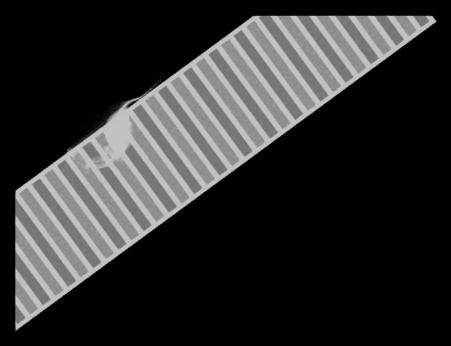
EVALUATION OF A CONTAINERIZED MASSIVELY PARALLEL HYBRID SPH SOLVER FOR TRANSIENT SOLID DYNAMICS

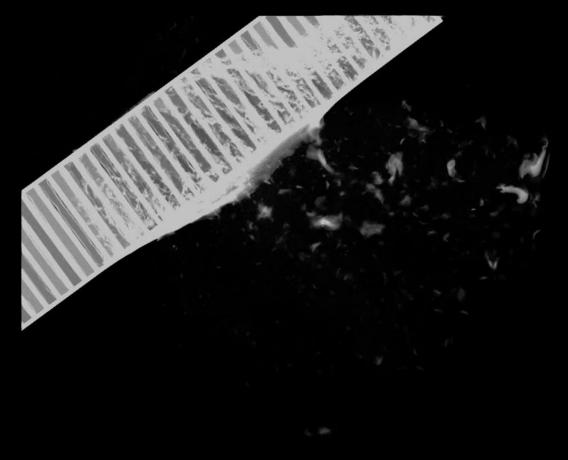
Gautier Dakin, Anthony Collé, Jérôme Limido

ABSTRAO SAS

French SME created in 2007

- Software Development
- Impetus exclusive distributor in France
- Training
- Studies of materials & structures under extreme loading


30% Growth Rate / Year


7 International Awards in the last 5 years

~50 International Publications

First Official Release Q4 2024

ABSTRAO - GAUTIER DAKIN

Presentation

- 1. Containerization of Abstrao solver
 - 1. Choice of containerization technology
 - 2. Seamless deployment or not?
- 2. Evaluation of performances of the containerized solution on workstation
 - 1. Linux workstation
 - 2. Windows workstation
- 3. Evaluation of performances of the containerized solution on cluster
 - 1. Performance comparisons
 - 2. Weak scalability

CONTAINERIZATION OF ABSTRAO SOLVER

Containerization of Abstrao solver

Choice has been made to use Apptainer:

- Security: Supports running unprivileged containers, reducing security risks.
- **Portability**: Allows easy movement of applications across different environments (laptops, clusters, clouds).
- **Compatibility**: Supports native integration with high-performance computing (HPC) workloads.
- **Reproducibility**: Ensures consistency across different systems and deployments.
- **Performance**: Minimal overhead for running applications close to native speed.

But...

Some questions remain in pratice:

- GPU: Does the container handle well GPUs?
- Parallel environment: How does the container handle parallel environment (mpi, slurm, etc...) ?
- Windows OS : Does it work on Windows workstation/server ?
- **Performance**: What does "minimal overhead" really mean?

Container environment

- Start with Ubuntu 22.04
- Install g++, cmake, ...
- Install CUDA 11.8 for GPU version
- Compile and install from source OpenMPI 4.1.4 with CUDA support activated
- At the end, remove and purge every CUDA related libs inside the container

EVALUATION OF THE CONTAINERIZED VERSION ON WORKSTATION

Evaluation of performances on linux workstation

- List of the 6 versions tested:
 - Locally compiled without GPU direct for MPI transfers
 LNGD
 - Locally compiled with GPU direct for MPI transfers
 - Apptainer solution without GPU direct for MPI transfers
 - Using MPI inside the container
 CNGDI
 - Using MPI outside the container
 CNGDO
 - Apptainer solution with GPU direct for MPI transfers
 - Using MPI inside the container
 CGDI
 - Using MPI outside the container
 CGDO

LGD

Apptainer usage

 \checkmark

- With MPI inside
 - apptainer –quiet exec --nv --env OMP_NUM_THREADS=\$NB_THREADS --bind \$PWD \$PATH_TO_CONTAINER mpirun –np \$NMPI \$EXE_INSIDE_CONTAINER
 - --nv allows usage of GPU cards inside the container
 - --env allows passing of environment variable like the number of threads
 - --bind mounts the desired path to the singularity
- With MPI outside
 - mpirun –np \$NMPI apptainer –quiet exec --nv --env OMP_NUM_THREADS=\$NB_THREADS --bind \$PWD \$PATH_TO_CONTAINER \$EXE_INSIDE_CONTAINER

Performances on workstation

• No GPU-Direct

	LNGD	CNGDI	CNGDO
Normalized time	1	1.03	1.03

• With GPU-Direct

	LGD	CGDI	CGDO
Normalized time	1	1.02	1.02

- Very slight overhead for the containerized solution
- GPU Direct is completely functional
- No real MPI testing as everything is on a workstation

Apptainer usage on Windows OS

- Apptainer is used inside WSL2 (Windows subsystem Linux)
- Always with MPI inside
 - apptainer –quiet exec --nvccli --env OMP_NUM_THREADS=\$NB_THREADS --bind \$PWD \$PATH_TO_CONTAINER mpirun –np \$NMPI \$EXE_INSIDE_CONTAINER
 - --nvccli allows usage of GPU cards inside the container
 - --env allows passing of environment variable like the number of threads
 - --bind mounts the desired path to the singularity
- Apptainer container is otherwise exactly the same as the one distributed on Linux.
- Usage of WSL2 add a slight overhead compared to the same machine on RHEL distribution.

EVALUATION OF THE CONTAINERIZED VERSION ON CLUSTER

Evaluation of performances on cluster

- Test are performed Supercomputer Turpan (ARM-accelerated Machine operated by Mesocenter CALMIP, Mesonet Project)
 - Total perfomance peak of 613,5 TF/s (1200 ARM core and 30 GPU A100).
 - Node contains :
 - 1 Ampere Altra Q80-30, 80 cores ARM v8.2, 3 Ghz : 1,9 TF/s Peak per socket
 - 2 GPU Nvidia A100-80 (80 GB HBM), 19,5 TF/s (FP64 TC)
 - 2 HDR Infiniband link (2 x 200 Gb/s)
 - 40,9 TF/s Peak Performance at node level
 - 15 Nodes in total
- We test the same 6 versions
- Container is built using cross compilation to handle arm64 environment on a amd64 machine

Performances on cluster – single node

• No GPU-Direct

	LNGD	CNGDI	CNGDO
Normalized time	1	1.03	1.03

• With GPU-Direct

	LGD	CGDI	CGDO
Normalized time	1	1.02	1.02

- Very slight overhead for the containerized solution
- No real MPI testing as everything is on a single node

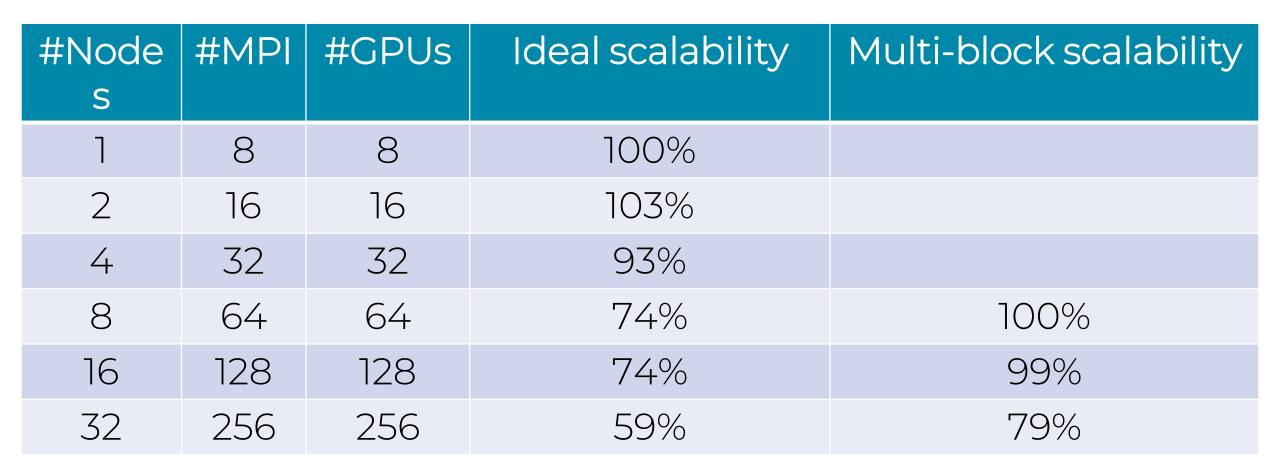
Performances on cluster – multiple nodes

• No GPU-Direct

	LNGD	CNGDI	CNGDO
Normalized time	1		1.02

• With GPU-Direct

	LGD	CGDI	CGDO
Normalized time	1		1.02


- Very slight overhead for the containerized solution
- Embedded MPI does not support multiple nodes as expected

Weak scalability – full industrial case – Turpan + Apptainer

#Nodes	#MPI	#GPUs	Ideal scalability	Multi-nodes scalability
1	2	2	100%	
2	4	4	89%	100%
4	8	8	86%	97%
8	16	16	85%	95%
15	30	30	83%	93%

CONCLUSION

Concluding remarks

- We developed a full transient solid dynamics code GPU + MPI which run from 4x to 100x faster than our competitors, with about 93% scalability on 32GPUs.
- Apptainer is well suited for GPU + MPI application
- Very slight overhead, pretty easy deployment and apptainer creation.
- The same container can be used on linux workstation, windows workstation through WSL2 and clusters.
 - On workstation, using embedded MPI is OK.
 - On clusters, MPI installed on it are to be used (through mpirun or srun)
- Acknowledgments
 - This work was supported by a French government grant managed by the Agence Nationale de la Recherche under the "Investissements d'avenir" program (reference "ANR-21-ESRE-0051"). This work was granted access to the MesoNET resources center and the MesoNET Project.
 - This work was performed using HPC resources from GENCI-IDRIS (Grant 2024-[AD010615633]).

We are hiring Interns, PhD Students or recent PhD graduates!

Exciting Opportunities: Join cutting-edge projects in high-performance computing.

Innovative Environment: Work on advanced with real-world impact.

Growth & Development: Enhance your skills in CUDA, MPI, and HPC technologies.

Collaborative Team: Be part of a dynamic team of experts and researchers.

Flexible Roles: Positions available for internships, thesis collaborations or full-time.

Location: Work with us in Plaisance du Touch, near Toulouse !

Apply Now at <u>contact@abstrao.com</u> and push the boundaries of technology with us!

THANK YOU FOR YOUR ATTENTION