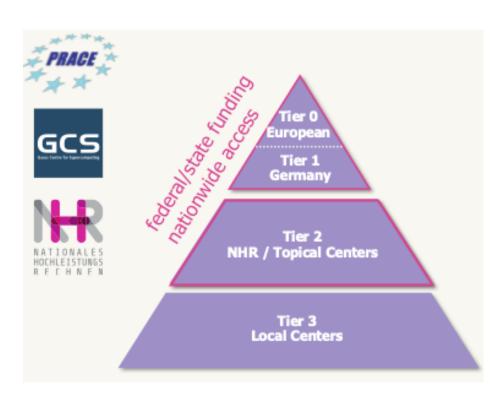
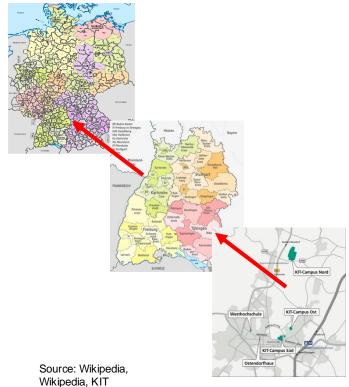


## HPC in Germany: Local, state, and federal level

Journées calcul et données 2024 Martin Frank

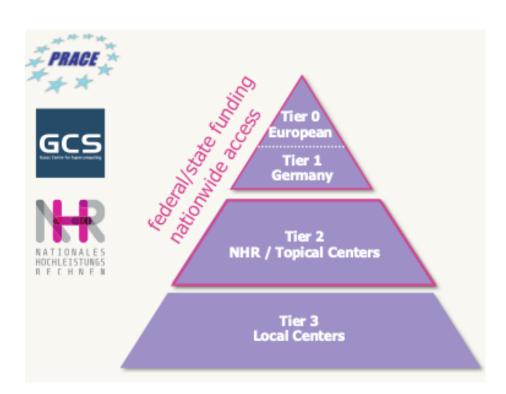




### **Outline**

2

05.11.24








Martin Frank – JCAD 2024 Scientific Computing Center

### **Outline**







Martin Frank – JCAD 2024 Scientific Computing Center



### **HPC** in Karlsruhe



### Big Data Infra. & Services, Data Science



- GridKa: the German data and analysis center for LHC (+ HL-LHC) and further particle and astroparticle experiments
  - ~ 70.000 CPU-cores, ~ 47 PB disk, ~ 73 PB tape, 400 Gb/s WAN
- Worldwide LHC Computing Grid

- https://www.scc.kit.edu/en/research/gridka.php
- LSDF: multi-disciplinary large-scale data facility
  - About 10 PB online storage, tightly connected to HoreKa
  - https://www.scc.kit.edu/en/services/11228.php





#### ■ Data Science Research

- Interdisciplinary: SimDataLabs and Helmholtz.Al
- Generic: data management/metadata, data analytics/AI/ML
- Active in large national & EU projects



### **HPC – Research Infrastructure**

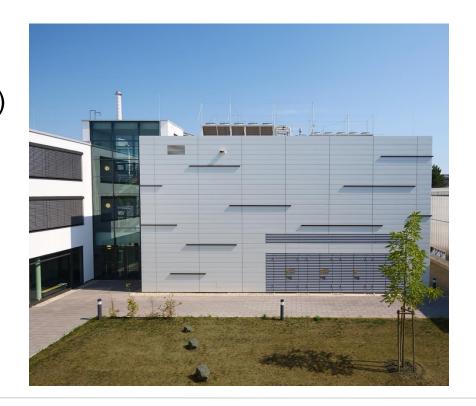


- HoreKa: Tier-2 flagship system
  - 17 PFLOPS, ~60,000 cores, 668 NVidia A100
  - Access via proposal
  - HoreKa-Blue (CPU), HoreKa-Green (GPU)
  - https://www.scc.kit.edu/dienste/horeka.php
- bwUniCluster2.0: Tier-3 local system
  - 902 compute nodes (different generations), 136 NVIDIA V100
  - Access via one signed form, JupyterHub, containers
  - https://www.scc.kit.edu/dienste/bwUniCluster 2.0.php
- SimDataLabs, SSPE Team
  - Joint projects (call for collaboration)
  - Voucher system in development
  - https://www.scc.kit.edu/forschung/sdl.php, https://www.scc.kit.edu/en/research/sspe.php



#### HoreKa-Teal



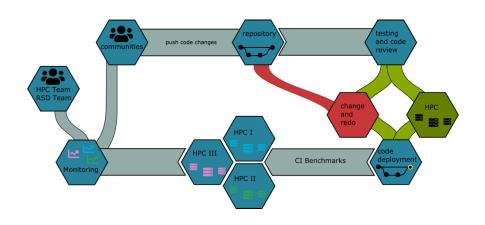

- GPU extension "HoreKa-Teal"
  - 22 GPU nodes
  - 4 NIVIDIA H100 GPUs each
- ■#6 Green500 in 06/24
- #2 Germany
- Efficiency: 63 GFLOP/(s\*W)
- Peak power: 6 PFLOP/s



### **Data Center Building**



- Passive cooling with warm water (42 Celsius in, 47 Celsius out)
- Utilization of waste heat (~80 kW) to heat office building
- German Data Center Award 2017 Category: Newly constructed energy- and resource-efficient data centers




Martin Frank – JCAD 2024 Scientific Computing Center

## **User Support**

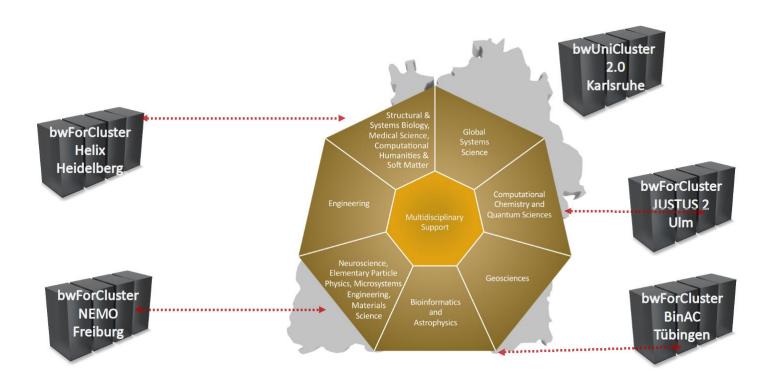


- Continuous Integration framework
- Team Software Sustainability and Performance Engineering
- 4 Simulation and Data Lifecycle Labs
  - Earth System Science
  - Materials Science
  - Engineering
  - Elementary particle physics





## **HPC** in Baden-Württemberg




## **HPC** in Baden-Württemberg

11

05.11.24





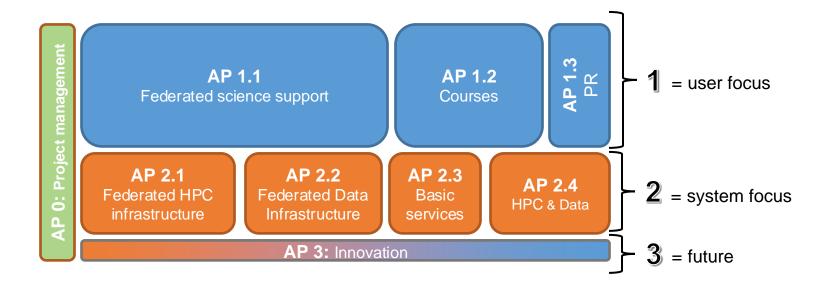
Martin Frank – JCAD 2024 Scientific Computing Center

## **Baden-Württemberg HPC-DIC Strategy**



- 3rd Framework 2025-2032
- DFG-reviewed in 2023
- Basis for funding by the state
- Strategy document (in German) published




https://publikationen.uni-tuebingen.de/xmlui/handle/10900/148845

- Federated identity management
- Federated software portfolio (680+ packages)
- Integration of data management with HPC
- bwHPC-Wiki
- Federated resource provision (450+)
- Joint support projects (110+ Tiger Teams)
- (Online) courses
- Annual symposium

Martin Frank – JCAD 2024 Scientific Computing Center

## **State-Funded Services Project (bwHPC-S5)**





Martin Frank – JCAD 2024 Scientific Computing Center

09.08.2023



# National High-Performance Computing Nationales Hochleistungsrechnen (NHR)



#### **NHR Timeline**



#### 2012:

German Science and Humanities Council (Wissenschaftsrat): Position paper | Strategic further development of High Performance Computing in Germany

#### 2018:

GWK resolution on funding of the National High Performance Computing

#### 2020:

Tender and funding decision

#### 2021:

Start of funding



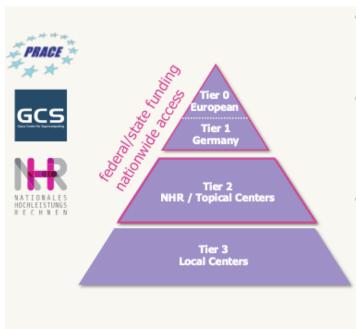
#### 2015:

German Science and Humanities Council (Wissenschaftsrat): Recommendations on the funding of high and ultrahigh performance computing in Germany

#### 2019:

Constitution of the NHR Strategy Committee and establishment of an interim NHR office

#### August 2021:


Foundation of the Association for National High Performance Computing – NHR Association

https://www.wissenschaftsrat.de/download/archiv/1838-12

05.11.24 Martin Frank – JCAD 2024 Scientific Computing Center

### NHR as Part of German HPC Infrastructure





16

05.11.24

- Recommendation by Research Council to introduce Tier-2 National High Performance Computing (NHR) infrastructure
- Competitive applications in 2020
  - official start: Jan 1, 2021
  - total funding 625M Euro (2021-2030)
  - currently 9 NHR centers
- Key aspects
  - joint federal/state-funding
  - transition from regional to competence-oriented for nationwide use
  - free access for all researchers from German universities
  - strengthen methodological competences through coordinated training, continuing education of users

Martin Frank – JCAD 2024 Scientific Computing Center

#### **NHR Members**





- Rhein-Westfälische Technische Hochschule Aachen
- Zuse Institut Berlin (ZIB)
- Technische Universität Darmstadt
- Technische Universität Dresden
- Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg
- GWDG/Georg-August-Universität Göttingen
- Karlsruher Institut f
  ür Technologie
- Johannes Gutenberg Universität Mainz für das Konsortium Süd-West (Goethe-Universität Frankfurt, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Johannes Gutenberg Universität Mainz, Universität des Saarlandes)
- Universität Paderborn

#### **Executive Board**

Christof Schütte (ZIB)

Gerhard Wellein (FAU Erlangen)

Christian Plessl (Uni Paderborn)

#### **NHR Office**

Dörte Sternel (Managing Director)

17 05.11.24 Martin Frank – JCAD 2024 Scientific Computing Center

### **Access to NHR Resources**



### **Computing time allocation**

- On a project-by-project basis according to a joint science-guided procedure
- NHR center freely selectable by applicants
- Central application portal (JARDS)

#### **Training program**

- Coordinated training program across centers
- Announcement via mailing list NHR announcements and website
- Courses on various HPC topics

### Consulting

05.11.24

Center-specific focal points

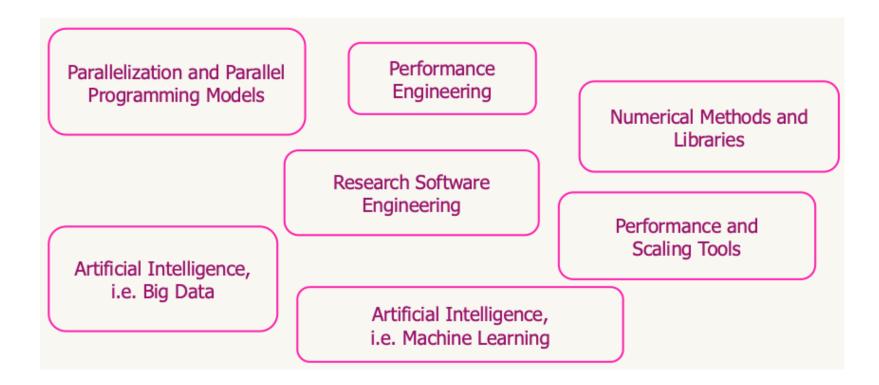
### **Application Specialization**



### **Topic Specialization**

- Centers coordinate to provide broad and complementary coverage of
  - science domains
  - methods
  - technologies
- Goal: provide tailored hardware, software, support, training
- One coordinating center per domain/topic
  - but no sole representation / responsibility
  - users can still apply at any center for their projects




Martin Frank – JCAD 2024 Scientific Computing Center

## **Methodological Focus**

20

05.11.24





Martin Frank – JCAD 2024 Scientific Computing Center

## **Ongoing and Planned Developments**



### **Attracting New Communities**

- Al: in October 2023 Joint Special Information Initiative for AI community started
  - Special course programs for new users constantly further developed
  - "Al hardware" is available
  - Overlap between AI service centers and NHR centers

**Data**: MoU with National Research Data Infrastructure Germany (NFDI) in progress

Already broad participation of NHR centers in NFDI consortia

#### Internationalization

 Deepening and expanding cooperation with international partner organizations (MoU with JHPCN)

Martin Frank – JCAD 2024 Scientific Computing Center



## **Challenges & Future Directions**

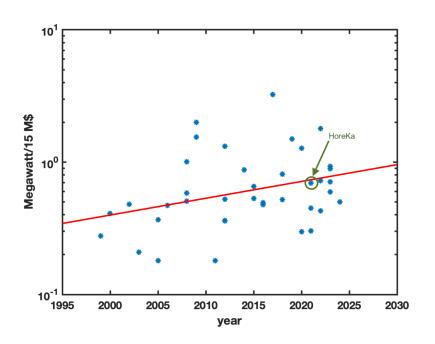


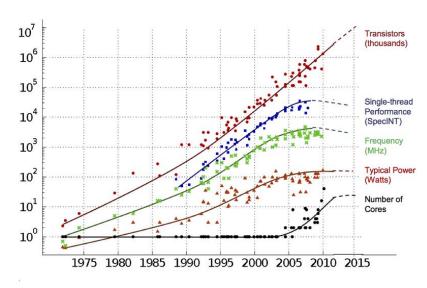
## Challenges



- Scientific challenges
- Energy efficiency and sustainability
- System components and architectures
- Software
- Data management
- Sensitive data
- Digital sovereignty
- Structures and organization

## **Energy: Cost & Availability**





- Electricity costs of HoreKa calculated as 800 kW x 365 days @ 17 Ct/kWh = 1.2 M€
- Electricity price 2023 ~40 Ct/kWh → annual costs = 2.8 M€
- Not possible to finance in the long run from total budget (7 M€/a, out of which 1.2 M€/a electricity)
- New systems planned for 2026 and 2032 @ 15 M€ each

- German Energy Efficiency Act, derived from European Energy Efficiency Directive:
  - Data centers that are currently in operation must have PUE <1.3 by July 1, 2030
  - Data centers that go into operation starting mid 2026 >10 % utilization of waste heat
  - Stricter regulations for new data centers
  - Law regulates air cooling temperatures, mandates establishment of an energy management system, further reporting duties

## **Outlook: Computing Power per Investment**







Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten Dotted line extrapolations by C. Moore

Martin Frank – JCAD 2024 Scientific Computing Center

### Challenges




#### **Architectures**

26

05.11.24

- End of Moore's Law (doubling of compute power at same cost, area and power consumption)
- Significant growth in computing power only through specialized, heterogeneous architectures (GPUs, TPUs, chiplets)
- Innovation process to explore and test potentially disruptive technologies, including Quantum Computing

Figure 1: Hype Cycle for Compute Infrastructure, 2021



Martin Frank - JCAD 2024 Scientific Computing Center

### **Medium-Term Path Toward GreenHPC**



### **Energy budget**

- Make energy consumption transparent
- Energy budget instead of compute budget (Fugaku)
- → Offer support and joint development

# Operational models for renewable/varying energy supply

- Couple to availability/price
- Scheduling/dumping jobs
- Other budgeting models
- → Offer support and joint development

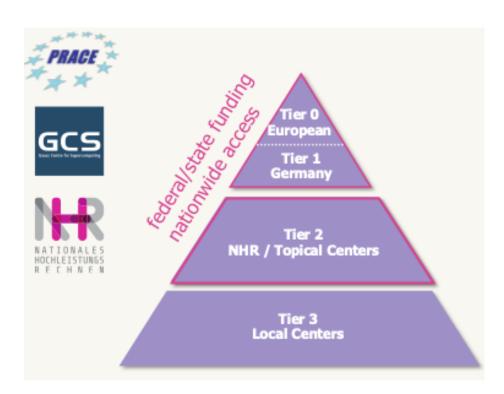
#### **Software**

- Key component of scientific work
- Challenge heterogeneity of the hardware
- RSE aiming at energy-optimized research software
- 3 pillars
  - Development
  - Education
  - Dissemination

## **Digital Sovereignty**



Digital sovereignty means having the skills and opportunities to complete tasks in a digital world independently, autonomously and securely:


- Transparency
- Ability to act
- Unrestricted choice of tools
- Maintaining and developing skills

### Plenty of possibilities for cooperation

Martin Frank – JCAD 2024 Scientific Computing Center

### Conclusion







Martin Frank – JCAD 2024 Scientific Computing Center